Respuesta :

Answer:

[tex]BC=40[/tex]

Step-by-step explanation:

Since AC is a tangent and PB is the raduis

[tex]\angle PBC= 9[/tex]

By pythagoras

[tex]PC^{2} =PB^{2} +BC^{2}[/tex]

[tex]41^{2} =9^{2} +BC^{2}[/tex]

[tex]1681-81=BC^{2}[/tex]

[tex]1600=BC^{2}[/tex]

[tex]BC=\sqrt{1600}[/tex]

[tex]BC=40[/tex]

OAmalOHopeO

Answer:

40

Step-by-step explanation:

A tangent to a circle is perpendicular to the radius intersection by definition. That makes BPC a right triangle at B.  BP and PD are both equal (9) because every radius of a circle is equal.  So

PC**2 = BP**2 + BC**2   or

41**2 = 9**2 + BC**2

1681 = 81 + BC**2

1681 - 81 = BC**2

1600 = BC**2

40 = BC