Answer:
Step-by-step explanation:
[tex]\frac{a(b+c)}{bc} ,\frac{b(c+a)}{ca} ,\frac{c(a+b)}{ab} ~are~in~A.P.\\if~\frac{ab+ca}{bc} ,\frac{bc+ab}{ca} ,\frac{ca+bc}{ab} ~are~in~A.P.\\add~1~to~each~term\\if~\frac{ab+ca}{bc} +1,\frac{bc+ab}{ca} +1,\frac{ca+bc}{ab} +1~are~in~A.P.\\if~\frac{ab+ca+bc}{bc} ,\frac{bc+ab+ca}{ca} ,\frac{ca+bc+ab\\}{ab} ~are~in~A.P.\\\\divide~each~by~ab+bc+ca\\if~\frac{1}{bc} ,\frac{1}{ca} ,\frac{1}{ab} ~are ~in~A.P.\\if~\frac{a}{abc} ,\frac{b}{abc} ,\frac{c}{abc} ~are~in~A.P.\\if~a,b,c~are~in~A.P.\\which~is~true.[/tex]