PLEASE HELP ! Quadrilateral OPQR is inscribed in circle N, as shown below. What is the measure of ∠ROP?

According to angle sum property
[tex]\\ \sf\longmapsto x+17+2x+19+6x-5+2x+19=360[/tex]
[tex]\\ \sf\longmapsto x+2x+6x+2x+17+19+19-5=360[/tex]
[tex]\\ \sf\longmapsto 11x+50=360[/tex]
[tex]\\ \sf\longmapsto 11x=360-50[/tex]
[tex]\\ \sf\longmapsto 11x=310[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{310}{11}[/tex]
[tex]\\ \sf\longmapsto x\approx 28[/tex]
Now
[tex]\\ \sf\longmapsto <ROP=x+17[/tex]
[tex]\\ \sf\longmapsto 28+17=45[/tex]
Answer:
Step-by-step explanation:
Since the OPQR is cyclic quadrilateral its opposite angles are supplementary.
Find the value of x first:
Find the angle ROP: