Respuesta :

Answer: Let the length of the hypotenuse be x

Applying the Pythagorean theorem we have :

x²=20²+48²

⇒x²=2704

⇒x=52( ∀ x >= 0 )

Step-by-step explanation:

Let assume the hypotenuse(longest side of right triangle) be x

By Pythagoras theorem

[tex] \bf \large \longrightarrow \: {c}^{2} \: = \: {a}^{2} \: + \: {b}^{2} [/tex]

  • c = x
  • a = 20
  • b = 48

Applying Pythagoras theorem

[tex] \bf \large \implies \: {x}^{2} \: = \: {20}^{2} \: + \: {48}^{2} [/tex]

[tex]\bf \large \implies \: {x}^{2} \: = \:400 \: + \: 2304[/tex]

[tex]\bf \large \implies \: {x}^{2} \: = \:2704[/tex]

[tex]\bf \large \implies \: \sqrt{x} \: = \: \sqrt{2704} [/tex]

[tex]\bf \large \implies \: \: x \: = \: 52[/tex]

Hence , the length of hypotenuse is 52.