Respuesta :

Answer:

Choice b. [tex]q[/tex] has to be false.

Step-by-step explanation:

Consider the truth table of [tex]p \implies q[/tex] ([tex]p[/tex] implies [tex]q[/tex]).

  • [tex]p[/tex] is true and [tex]q[/tex] is true: [tex]p \implies q[/tex] would be true.
  • [tex]p[/tex] is true and [tex]q[/tex] is false: [tex]p \implies q[/tex] would be false.
  • [tex]p[/tex] is false and [tex]q[/tex] is true: [tex]p \implies q[/tex] would be true.
  • [tex]p[/tex] is false and [tex]q[/tex] is false: [tex]p \implies q[/tex] would also be true.

The only combination where [tex]p \implies q[/tex] is false is when [tex]p[/tex] is true and [tex]q[/tex] is false. Hence, the [tex]q\![/tex] here must be false.