Help!!

A.) show work as you evaluate the composition: (g o g) (2)

B.) show work as you find: f^-1 (x)

C.) show a composition of the two functions f and g. Are they inverse functions, explain using a complete sentence

Help A show work as you evaluate the composition g o g 2 B show work as you find f1 x C show a composition of the two functions f and g Are they inverse functio class=

Respuesta :

caylus

Answer:

Hello,

Step-by-step explanation:

[tex]A)\\g(x)=\dfrac{x-5}{-3} =\dfrac{-x}{3} +\dfrac{5}{3} \\\\(gog)(x)=g(g(x))=g(\dfrac{-x}{3} +\dfrac{5}{3})\\\\=\dfrac{\dfrac{-x}{3} +\dfrac{5}{3} }{3}+\dfrac{5}{3} \\\\\\=\dfrac{-x}{9} +\dfrac{5}{9} +\dfrac{5}{3}\\\\=-\dfrac{x}{9}+\dfrac{20}{9} \\\\\\(gog)(2)=-\dfrac{2}{9}+\dfrac{20}{9} =\dfrac{18}{9}=2 \\\\[/tex]

[tex]B)\\f(x)=y=-3x-5\\exchanging\ y\ and\ x\\x=-3y-5\\3y=-x-5\\\\y=\dfrac{-x}{3} -\dfrac{5}{3} \\\\f^{-1}(x)=\dfrac{-x}{3} -\dfrac{5}{3} \\\\[/tex]

[tex]C)\\\\(fog)(x)\ must\ be\ equal\ to\ x\\\\\\(fog)(x)=g(f(x))=g(-3x-5)\\\\=\dfrac{-(-3x-5)}{3} +\dfrac{5}{3} \\\\=x+\dfrac{5}{3} +\dfrac{5}{3} \\\\\\=x+\dfrac{10}{3}\ and\ not\ x\ !!!\\[/tex]

f(x) and g(x) are not inverse functions.