FOR BRAINLIEST!!!!ASAP

19) One number is 9 more than another. Their product is 11 more than five times their sum.
Find the numbers.

Respuesta :

snog

Answer:

-7 and 2 or 8 and 17

Step-by-step explanation:

If we let the numbers be [tex]x[/tex] and [tex]x+9[/tex], the equation to solve this problem will be as follows:

[tex]x(x+9)=5(x+x+9)+11[/tex]

Solving the equation for [tex]x[/tex], we get:

[tex]x(x+9)=5(x+x+9)+11[/tex]

[tex]x(x+9)=5(2x+9)+11[/tex] (Combine like terms)

[tex]x^{2} +9x=10x+45+11[/tex] (Use the Distributive Property of Multiplication to multiply expressions)

[tex]x^{2} +9x=10x+56[/tex] (Combine like terms)

[tex]x^{2} -x-56=0[/tex] (Subtract [tex]10x[/tex] and [tex]56[/tex] from both sides of the equation)

[tex]x^{2} -8x+7x-56[/tex] (Split [tex]-x[/tex])

[tex]x(x-8)+7(x-8)=0[/tex] (Factor by taking a common term out)

[tex](x-8)(x+7)=0[/tex] (Factor by taking a common term out)

[tex]x-8=0[/tex] or [tex]x+7=0[/tex] (Use the Zero Product Property)

[tex]x=8[/tex] or [tex]x=-7[/tex]

Therefore, the first number could be either -7 or 8, and the second number could be -7 + 9 = 2 or 8 + 9 = 17, respectively. Hope this helps!