Answer:
-7 and 2 or 8 and 17
Step-by-step explanation:
If we let the numbers be [tex]x[/tex] and [tex]x+9[/tex], the equation to solve this problem will be as follows:
[tex]x(x+9)=5(x+x+9)+11[/tex]
Solving the equation for [tex]x[/tex], we get:
[tex]x(x+9)=5(x+x+9)+11[/tex]
[tex]x(x+9)=5(2x+9)+11[/tex] (Combine like terms)
[tex]x^{2} +9x=10x+45+11[/tex] (Use the Distributive Property of Multiplication to multiply expressions)
[tex]x^{2} +9x=10x+56[/tex] (Combine like terms)
[tex]x^{2} -x-56=0[/tex] (Subtract [tex]10x[/tex] and [tex]56[/tex] from both sides of the equation)
[tex]x^{2} -8x+7x-56[/tex] (Split [tex]-x[/tex])
[tex]x(x-8)+7(x-8)=0[/tex] (Factor by taking a common term out)
[tex](x-8)(x+7)=0[/tex] (Factor by taking a common term out)
[tex]x-8=0[/tex] or [tex]x+7=0[/tex] (Use the Zero Product Property)
[tex]x=8[/tex] or [tex]x=-7[/tex]
Therefore, the first number could be either -7 or 8, and the second number could be -7 + 9 = 2 or 8 + 9 = 17, respectively. Hope this helps!