Answer:
[tex] \frac{x}{2y} = \frac{4}{10} \\ 8y = 10x \\ y = \frac{10x}{8} - - - - - 1 \\ \\ \frac{a}{5b} = \frac{25}{100} \\ \frac{a}{5b} = \frac{1}{4} \\ 4a = 5b \\ a = \frac{5b}{4} - - - 2 \\ \\ so \: \: \frac{a + y}{5} \\ = (a + y) \times \frac{1}{5} \\ = ( \frac{5b}{4} + \frac{5x}{4} ) \times \frac{1}{5} \\ = \frac{5b + 5x}{4} \times \frac{1}{5} \\ = \frac{5(b + x)}{4} \times \frac{1}{5} \\ = \frac{b + x}{4} \\ \\ so \: \: \: \frac{a + y}{5} = \frac{b + x}{4} [/tex]