Respuesta :

Answer:

y = 5/3x+2

Step-by-step explanation:

First find the slope

m = ( y2-y1)/(x2-x1)

   = ( -3 - -8)/( -3 - -6)

    = ( -3+8) / (-3+6)

    = 5/3

The slope intercept form of a line is

y = mx+b where m is the slope and b is the y intercept

Substituting the point (-3,-3)

-3 = 5/3(-3) + b

-3 = -5+b

-3+5 = b

2 = b

y = 5/3x+2

Given points

  • (-6,-8)
  • (-3,-3)

First find the slope

[tex]\boxed{\sf m=\dfrac{y_2-y_1}{x_2-x_1}}[/tex]

[tex]\\ \sf\longmapsto m=\dfrac{-3+8}{-3+6}[/tex]

[tex]\\ \sf\longmapsto m=\dfrac{5}{3}[/tex]

Now

[tex]\boxed{\sf y=mx+b}[/tex]

[tex]\\ \sf\longmapsto -3=\dfrac{5}{3}(-3)+b[/tex]

[tex]\\ \sf\longmapsto b=2[/tex]

Hence the equation will be

[tex]\\ \sf\longmapsto y=\dfrac{5}{3}x+2[/tex]