Respuesta :
Answer:
y = 5/3x+2
Step-by-step explanation:
First find the slope
m = ( y2-y1)/(x2-x1)
= ( -3 - -8)/( -3 - -6)
= ( -3+8) / (-3+6)
= 5/3
The slope intercept form of a line is
y = mx+b where m is the slope and b is the y intercept
Substituting the point (-3,-3)
-3 = 5/3(-3) + b
-3 = -5+b
-3+5 = b
2 = b
y = 5/3x+2
Given points
- (-6,-8)
- (-3,-3)
First find the slope
[tex]\boxed{\sf m=\dfrac{y_2-y_1}{x_2-x_1}}[/tex]
[tex]\\ \sf\longmapsto m=\dfrac{-3+8}{-3+6}[/tex]
[tex]\\ \sf\longmapsto m=\dfrac{5}{3}[/tex]
Now
[tex]\boxed{\sf y=mx+b}[/tex]
[tex]\\ \sf\longmapsto -3=\dfrac{5}{3}(-3)+b[/tex]
[tex]\\ \sf\longmapsto b=2[/tex]
Hence the equation will be
[tex]\\ \sf\longmapsto y=\dfrac{5}{3}x+2[/tex]