The expression [tex]\frac{tan x + cot x}{cosec x* cos x} = sec ^{2} x[/tex] is proved .
What is trigonometric ratio?
Trigonometric ratios are the ratios of the length of sides of a triangle. These ratios in trigonometry relate the ratio of sides of a right triangle to the respective angle.
formulas for trigonometric ratios is:
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
According to the question
[tex]\frac{tan x + cot x}{cosec x* cos x} = sec ^{2} x[/tex]
[tex]\frac{\frac{sin x}{cos x} + \frac{cos x}{sin x}}{\frac{1}{sin x}*cosx } = sec^{2} x[/tex]
[tex]\frac{\frac{sin^{2}x + cos^{2}x }{sinx cosx} }{\frac{cosx}{sinx} } = sec^{2} x[/tex]
[tex]\frac{\frac{1}{sinx cosx} }{\frac{cosx}{sinx} } = sec^{2} x[/tex]
[tex]\frac{\frac{1}{cosx} }{\frac{cosx}{1} } = sec^{2} x[/tex]
[tex]\frac{1}{cos^{2} x} =sec^{2} x[/tex]
[tex]sec^{2} x =sec^{2} x[/tex]
L.H.S = R.H.S
Hence, The expression [tex]\frac{tan x + cot x}{cosec x* cos x} = sec ^{2} x[/tex] is proved .
To know more about trigonometric ratio here:
https://brainly.com/question/13724581
#SPJ2