PLEASE HELP!!

Prove the trigonometric identity.


tanx+cotxcscxcosx=sec2x


Drag an expression to each box to correctly complete the proof.

PLEASE HELP Prove the trigonometric identity tanxcotxcscxcosxsec2x Drag an expression to each box to correctly complete the proof class=

Respuesta :

You're going to have to break all of these identities into sin and cos, and then just resolve them like normal.

Ver imagen onika92

The expression [tex]\frac{tan x + cot x}{cosec x* cos x} = sec ^{2} x[/tex] is proved .

What is trigonometric ratio?

Trigonometric ratios are the ratios of the length of sides of a triangle. These ratios in trigonometry relate the ratio of sides of a right triangle to the respective angle.

formulas for trigonometric ratios is:

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

According to the question

[tex]\frac{tan x + cot x}{cosec x* cos x} = sec ^{2} x[/tex]

[tex]\frac{\frac{sin x}{cos x} + \frac{cos x}{sin x}}{\frac{1}{sin x}*cosx } = sec^{2} x[/tex]

[tex]\frac{\frac{sin^{2}x + cos^{2}x }{sinx cosx} }{\frac{cosx}{sinx} } = sec^{2} x[/tex]

[tex]\frac{\frac{1}{sinx cosx} }{\frac{cosx}{sinx} } = sec^{2} x[/tex]

[tex]\frac{\frac{1}{cosx} }{\frac{cosx}{1} } = sec^{2} x[/tex]

[tex]\frac{1}{cos^{2} x} =sec^{2} x[/tex]

[tex]sec^{2} x =sec^{2} x[/tex]

L.H.S = R.H.S

Hence, The expression [tex]\frac{tan x + cot x}{cosec x* cos x} = sec ^{2} x[/tex] is proved  .

To know more about trigonometric ratio here:

https://brainly.com/question/13724581

#SPJ2