Respuesta :

Answer:

[tex]y=-\frac{1}{2}x-8[/tex]

Step-by-step explanation:

[tex](-4,-6)(-2,-7)[/tex]

Step 1. Find the slope (by using the slope-formula)

m = slope

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]m=\frac{-7--6}{-2--4}[/tex]

[tex]m=\frac{-1}{2}[/tex]

[tex]m=-\frac{1}{2}[/tex]

Step 2. Create the equation of a line that has a slope of [tex]-\frac{1}{2}[/tex]

[tex]y=-\frac{1}{2} x+b[/tex]

Step 3. Find the y-intercept

To do this, use any of the two points and substitute their x and y values

[tex]y=-\frac{1}{2}x+b[/tex]

point: [tex](-2,-7)[/tex]

[tex](-7)=-\frac{1}{2}(-2)+b[/tex]

[tex](-7)=1+b[/tex]

[tex]b=-7-1[/tex]

[tex]b=-8[/tex]

Step 4. Write the equation in Slope-intercept form

[tex]y=mx+b[/tex]

[tex]y=-\frac{1}{2} x-8[/tex]