Respuesta :
[tex]\\ \qquad\quad\sf\longmapsto ^nC_2=^nC_4[/tex]
[tex]\boxed{\sf ^nC_r=\dfrac{n!}{r!(n-r)!}}[/tex]
[tex]\\ \qquad\quad\sf\longmapsto \dfrac{n!}{2!(n-2)!}=\dfrac{n!}{4!(n-4)!}[/tex]
[tex]\\ \qquad\quad\sf\longmapsto \dfrac{1}{2\times 1(n-2)!}=\dfrac{1}{4\times 3\times 2\times 1(n-4)(n-3)(n-2)!}[/tex]
[tex]\\ \qquad\quad\sf\longmapsto 2=24(n-4)(n-3)[/tex]
[tex]\\ \qquad\quad\sf\longmapsto 2=24\left\{n(n-3)-4(n-3)\right\}[/tex]
[tex]\\ \qquad\quad\sf\longmapsto 2=24(n^2-3n-4n+12)[/tex]
[tex]\\ \qquad\quad\sf\longmapsto 2=24(n^2-7n+12)[/tex]
[tex]\\ \qquad\quad\sf\longmapsto 2=24n^2-168n+288[/tex]
[tex]\\ \qquad\quad\sf\longmapsto 24n^2-168n=-286[/tex]
[tex]\\ \qquad\quad\sf\longmapsto 24n^2-168n+286=0[/tex]
[tex]\\ \qquad\quad\sf\longmapsto 12n^2-84n+143=0[/tex]
[tex]\\ \qquad\quad\bf\longmapsto n=\dfrac{7}{3}\pm \dfrac{1}{3}\sqrt{3}[/tex]
Answer:
n = 6
Step-by-step explanation:
There's a secret formula for this:
If nCx = nCy,
Then n = x + y.
Hence, for this question, n = 2 + 4 = 6