1. Determine whether the function f(x)= x³ from i to i is one to one. Explain.

2. Is the function f (x)= 3x+ 4 from the set of integers to integers one to one? Why? 48​

Respuesta :

Answer:

The function [tex]f:\mathbb Z\to\mathbb Z,~f(x)=3x+4[/tex] is injective (one-to-one).

Step-by-step explanation:

The definition of an injective function follows.

Let [tex]X,Y[/tex] be sets. Let [tex]f:X\to Y[/tex] be a function. We say [tex]f[/tex] is injective if, for all [tex]x,y\in X[/tex], [tex]f(x)=f(y)[/tex] implies [tex]x=y[/tex].

This is the proof that  [tex]f:\mathbb Z\to\mathbb Z,~f(x)=3x+4[/tex] is injective.

Let [tex]x,y\in\mathbb Z[/tex] and assume [tex]f(x)=f(y)[/tex]. This means [tex]3x+4=3y+4[/tex]. Subtracting [tex]4[/tex] gives [tex]3x=3y[/tex], then dividing by [tex]3[/tex] gives [tex]x=y[/tex]. Thus [tex]f[/tex] is injective.