Find the ratio of sinβ, cosβ and tanβ from given right angled triangle.

[tex]\\ \sf\longmapsto sin\beta=\dfrac{Perpendicular}{Hypotenuse}=\dfrac{AC}{BC}[/tex]
[tex]\\ \sf\longmapsto cos\beta=\dfrac{Base}{Hypotenuse}=\dfrac{AB}{BC}[/tex]
[tex]\\ \sf\longmapsto tan\beta=\dfrac{Perpendicular}{Base}=\dfrac{AC}{AB}[/tex]
Answer:
[tex] \sin( \beta ) = \frac{opposite}{hypoten} = \frac{ac}{bc} \\ \cos( \beta ) = \frac{adjascent}{hypotenuse} = \frac{ab}{bc} \\ \tan( \beta ) = \frac{opposite}{adjacent} = \frac{ac}{ab} \\ thank \: you[/tex]