Respuesta :

Answer:

[tex]\sqrt{65}[/tex]

Step-by-step explanation:

Hi there!

We want to find the distance between the points (7, 2) and (6, 10).

We can use the distance formula for that, which is [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex], where [tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex] are points

We have the two points needed to find the formula, let's label their values to avoid confusion

[tex]x_1=7\\y_1=2\\x_2=6\\y_2=10[/tex]

Now substitute those values into the formula

[tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

[tex]\sqrt{(6-7)^2+(10-2)^2}[/tex]

Now, under the radical, simplify the values in parentheses

[tex]\sqrt{(-1)^2+(8)^2}[/tex]

Now raise the values under the radical

[tex]\sqrt{1+64}[/tex]

Add the values under the radical together

[tex]\sqrt{65}[/tex]

It's always good to simplify the radical if possible, but in this case, we can't. So [tex]\sqrt{65}[/tex] is the answer.

Hope this helps!