Respuesta :

Answer:

[tex]x=2[/tex]

[tex]x=-7[/tex]

Step-by-step explanation:

[tex]\sqrt{9x+63}=x+7[/tex]

Square both sides:-

[tex]9x+63=x^2+14x+49[/tex]

Switch sides:-

[tex]x^2+14x+49=9x+63[/tex]

Subtract 63 from both sides:-

[tex]x^2+14x+49-63=9x+63-63[/tex]

[tex]x^2+14x-14=9x[/tex]

Subtract 9x from both sides:-

[tex]x^2+14x-14-9x=9x-9x[/tex]

[tex]x^2+5x-14=0[/tex]

Now, solve with quadratic formal:-

[tex]x_{1,\:2}=\frac{-5\pm \sqrt{5^2-4\times \:1\times \left(-14\right)}}{2\times \:1}[/tex]

[tex]\sqrt{5^2-4\times \:1\times \left(-14\right)}[/tex]

[tex]=\sqrt{5^2+4\times \:1\times \:14}[/tex]

Multiply the numbers :-

[tex]\sqrt{5^2+56}[/tex]

Add :-

[tex]\sqrt{81}[/tex]

Factor numbers:-

[tex]81=9^2[/tex]

[tex]\sqrt{9^2}[/tex]

Radical Rule:-

[tex]\sqrt[n]{a^{n} } =a[/tex]

[tex]\sqrt{9^2}=9[/tex]

[tex]x_{1,\:2}=\frac{-5\pm \:9}{2\times \:1}[/tex]

Separate solutions:-

⇒ [tex]x_1=\frac{-5+9}{2\times \:1}[/tex]

[tex]\frac{4}{2\times \:1}[/tex]

[tex]=\frac{4}{2}[/tex]

→ [tex]=2[/tex]

[tex]\:x_2=\frac{-5-9}{2\times \:1}[/tex]

[tex]\frac{-5-9}{2\times \:1}[/tex]

[tex]\frac{-14}{2\times \:1}[/tex]

[tex]\frac{-14}{2}[/tex]

→ [tex]=-7[/tex]

OAmaOHopeO