Answer:
[tex]f(4) = 4[/tex]
[tex]f(0) = 5[/tex]
[tex]f(-\frac{4}{3}) = \frac{16}{3}\\[/tex]
Step-by-step explanation:
Given:
[tex]f(x) = -\frac{1}{4}x +5\\[/tex]
Solving for [tex]f(4)[/tex]:
[tex]f(4) = -\frac{1}{4}(4) +5 \\ f(4) = -1 +5 \\ f(4) = 4[/tex]
Solving for [tex]f(0)[/tex]:
[tex]f(0) = -\frac{1}{4}(0) +5 \\ f(0) = 0 +5 \\ f(0) = 5[/tex]
Solving for [tex]f(-\frac{4}{3})\\[/tex]:
[tex]f(-\frac{4}{3}) = -\frac{1}{4}(-\frac{4}{3}) +5 \\ f(-\frac{4}{3}) = \frac{1}{3} +5 \\ f(-\frac{4}{3}) = \frac{1}{3} +\frac{15}{3} \\ f(-\frac{4}{3}) = \frac{16}{3}[/tex]