liveiyy22
contestada

If fixed costs are 30, variable costs per unit are Q + 30 and the demand function is
P + 2Q = 50
Show that the associated profit function is
π = 3Q² + 47Q - 30
Find the break even values of Q and deduce the maximun profit.​

Respuesta :

We will use the demand function "P + 2Q = 50" to solve various problems .

From the function [tex]P + 2Q = 50[/tex]

We then rearrange to [tex]P = 50 - 2Q[/tex]

Let remember that Total Revenue = Price * Quantity

Total Revenue [tex]TR = P * Q[/tex]

[tex]TR = 50*Q - 2Q*Q[/tex]

[tex]TR = 50Q - 2Q2[/tex]

Let remember that Total cost = Fixed Cost + (Quantity*Variable cost)

[tex]TC = FC + [Q * (AVC)]\\TC = 30 + [Q * (Q + 3)]\\TC = 30 + Q2 + 3Q[/tex]

Now to derive profit, we will subtract Total cost from Total Revenue[tex]Profit = TR - TC \\Profit = 50Q - 2Q2 - 30 - Q2 - 3Q\\Profit = 47Q - 3Q2 - 30\\Profit = 3Q² + 47Q - 30[/tex]

In break-even, the profit equals 0. Z = 0

[tex]47Q - 3Q2 - 30 = 0\\3Q2 - 47Q + 30 = 0\\3Q2 - 45Q - 2Q + 30 = 0\\3Q(Q - 15) - 2(Q - 15) = 0\\(Q - 15) x (3Q - 2) = 0\\Q = 15 or Q = 2/3[/tex]

See similar question here

brainly.com/question/13428058