A pentagon ABCDE has sides AE and CD parallel and the line EC is parallel to side AB. Sides ED and BC, when extended, meet at a point F. ∠ABC is equal to ∠CDE. Show that ∠AEC = ∠CFD

Pls helpppp

Respuesta :

Please find the graph file in the attached file and proving can be defined as follows:

As the given graph:

[tex]\to \bold{AE || CD}[/tex]

So,  

[tex]\to \bold{\angle AEC=\angle DCE }\\\\[/tex]

AS  

[tex]\to \bold{AB || CE}[/tex]

So,  

[tex]\to \bold{\angle ABC=\angle ECF \ \ \ \ \ \text{parallel property}}\\\\\to \bold{\angle CDE=\angle DCF +\angle CFD \ \ \ \ \ \ \ \ \ \text{property of sum of outer angle of a traingle}} \\\\[/tex]

AS

[tex]\to \bold{\angle ABC =\angle CDE} \\\\[/tex]

So  

[tex]\to \bold{\angle ABC=\angle DCF +\angle CFD = \angle ECF}\\\\\to \bold{\angle ECF= \angle DCF +\angle DCF \ \ \ \ \ \ \ \ \ \ \text{angle exchange}}\\\\[/tex]

So,

[tex]\to \bold{\angle DCF +\angle CFD = \angle DCE+ \angle DCF}\\\\\to \bold{\angle DCE =\angle CFD = \angle AEC}\\\\[/tex]

 So,

[tex]\to \bold{\angle AEC= \angle CFD}[/tex]

Learn more:

brainly.com/question/24211031

Ver imagen codiepienagoya