Coal has plenty of energy which produces heat and light when it burns. It generates electricity in the United States more than half of the electricity humans use is burned inside the power plants.
Let,
The energy of 1kg coal[tex]\bold{=8.141\ kWh}[/tex]
Given:
Required energy[tex]\bold{=1525 \times 10^6\ J / second}\\\\[/tex]
operating efficiency[tex]\bold{ =37\%}\\\\[/tex]
So the equation:
[tex]\to \bold{0.37 x=1525 \times 10^6 \ J}\\\\[/tex]
[tex]\to \bold{x= \frac{1525 \times 10^6 \ J}{0.37}=4121.62 \times 10^6\ J}\\\\[/tex]
[tex]\bold{x=energy}[/tex] which is released by the burning coal per second
Calcalating the energy which is released in 1 hour:
[tex]\to \bold{P_C=x\times 3600}\\\\[/tex]
[tex]\bold{= 4121.62 \times 10^6\ J \times 3600}\\\\ \bold{= 1483.78 \times 10^6\ \frac{J}{hr}}\\\\[/tex]
The energy released by 1 kg coal is [tex]\bold{\frac{1}{hour}}[/tex] [tex]=\bold{8.141\times 10^3 \ J}[/tex]
So, the total coal required to be burnt in 1 hour is:
[tex]\bold{y=\frac{P_c}{8.141\times 10^3}}\\\\[/tex]
[tex]\bold{=\frac{1483.78 \times 10^6 \ \frac{J}{hr}}{8.141\times 10^3}}\\\\\bold{=182.26\times 10^7\ \frac{kg}{h}}[/tex]
Convert the value into t/h:
[tex]\to \bold{y=200\times 10^4 \ t/h}[/tex]
Learn more:
brainly.com/question/19580387