Respuesta :

Rewrite the root expressions as fractional exponents:

[tex]\dfrac{\sqrt[3]{7}}{\sqrt[5]{7}} = \dfrac{7^{1/3}}{7^{1/5}}[/tex]

Recall that [tex]\frac{a^m}{a^n} = a^{m-n}[/tex], so that

[tex]\dfrac{7^{1/3}}{7^{1/5}} = 7^{1/3 - 1/5}[/tex]

Simplify the exponent:

[tex]\dfrac13 - \dfrac15 = \dfrac5{15} - \dfrac3{15} = \dfrac{5-3}{15} = \dfrac2{15}[/tex]

Then you end up with

[tex]\dfrac{\sqrt[3]{7}}{\sqrt[5]{7}} = 7^{2/15}[/tex]