Wahmmy
contestada

Replace * with a monomial so that the trinomial may be represented by a square of a binomial:
1) * + 28a + 49
2) 36 - 24x + *
3) 6.25a^2 + * + 1/4b^2
4) * + 2bc + 100c^2

Respuesta :

A quadratic expression is represented as: [tex]ax^2 + bx + c[/tex]. The expressions when the *'s are replaced are:

  • [tex]4a^2 + 28a + 49[/tex].
  • [tex]36 -24x + 4x^2[/tex].
  • [tex]6.25a^2 + 2.5b + \frac 14 b^2[/tex].
  • [tex]\frac{1}{100}b^2 + 2bc + 100c^2[/tex]

For a quadratic expression to be a perfect square binomial, the following must be true:

[tex]b^2 = 4ac[/tex]

[tex](a)\ * + 28a + 49[/tex]

By comparison:

[tex]a = *[/tex]

[tex]b = 28[/tex]

[tex]c = 49[/tex]

So, we have:

[tex]b^2 = 4ac[/tex]

[tex]28^2 = 4 \times a \times 49[/tex]

Make a the subject

[tex]a = \frac{28^2}{4 \times 49}[/tex]

[tex]a = 4[/tex]

Hence, the complete expression is:

[tex]4a^2 + 28a + 49[/tex]

[tex](b)\ 36 - 24x + *[/tex]

By comparison:

[tex]a = *[/tex]

[tex]b = -24[/tex]

[tex]c = 36[/tex]

So, we have:

[tex]b^2 = 4ac[/tex]

[tex](-24)^2 = 4 \times a \times 36[/tex]

Make a the subject

[tex]a = \frac{(-24)^2}{4 \times 36}[/tex]

[tex]a = 4[/tex]

Hence, the complete expression is:

[tex]36 -24x + 4x^2[/tex]

[tex](c)\ 6.25a^2 + * + \frac 14 b^2[/tex]

By comparison:

[tex]a = 6.25[/tex]

[tex]b = *[/tex]

[tex]c = \frac 14b^2[/tex]

So, we have:

[tex]b^2 = 4ac[/tex]

[tex]*^2 = 4 \times 6.25 \times \frac 14b^2[/tex]

[tex]*^2 = 6.25 \times b^2[/tex]

Take square roots of both sides

[tex]* = 2.5b[/tex]

Hence, the complete expression is:

[tex]6.25a^2 + 2.5b + \frac 14 b^2[/tex]

[tex](d)\ * + 2bc + 100c^2[/tex]

By comparison

[tex]a = 100[/tex]

[tex][b] = 2b[/tex]

[tex]c= *[/tex]

So, we have:

[tex]b^2 = 4ac[/tex]

[tex](2b)^2 = 4 \times 100 \times c[/tex]

[tex]4b^2 = 400 \times c[/tex]

Divide both sides by 400

[tex]c = \frac 1{100}b^2[/tex]

Hence, the complete expression is:

[tex]\frac{1}{100}b^2 + 2bc + 100c^2[/tex]

Read more about binomial and monomials at:

https://brainly.com/question/2150782