Using the probability concept, it is found that:
a) 0.3 = 30% probability that a student at this college who takes MATH 101 will take it with Prof. B and prefer Probability.
b) 0.6 = 60% probability that a student at this college who takes MATH 101 with Prof. B will prefer Probability.
c) 0.4 = 40% probability that a student at this college who takes MATH 101 and prefers Probability is taking the course with Prof. B.
-------------------------
Item a:
Thus:
[tex]p = \frac{24}{80} = 0.3[/tex]
0.3 = 30% probability that a student at this college who takes MATH 101 will take it with Prof. B and prefer Probability.
Item b:
Then:
[tex]p = \frac{24}{40} = 0.6[/tex]
0.6 = 60% probability that a student at this college who takes MATH 101 with Prof. B will prefer Probability.
Item c:
Then:
[tex]p = \frac{24}{60} = 0.4[/tex]
0.4 = 40% probability that a student at this college who takes MATH 101 and prefers Probability is taking the course with Prof. B.
A similar problem is given at https://brainly.com/question/24658381