3. In a figure a small square is cutting out from the largesquare. The area of the remaining part is 91 cm². The sum of Sides equal to 52cm.
(a). If the side of large square is x and the side of smallest square is y then find the area of the remaining part?
(b). Find the sides of the smallest square?
(c). Find the areas of the two squares?​

3 In a figure a small square is cutting out from the largesquare The area of the remaining part is 91 cm The sum of Sides equal to 52cma If the side of large sq class=

Respuesta :

Step-by-step explanation:

[tex]\large\underline{\sf{Solution-}}[/tex]

Given that,

  1. ABCD is a square of side x cm

  1. EFGH is a square of side y cm

Further given that,

  1. Sum of all sides = 52 cm

It means

  • Perimeter of square ABCD + Perimeter of square EFGH is 52 cm

We know,

[tex] \purple{\rm :\longmapsto\:\boxed{\tt{ Perimeter_{[square]} \: = \: 4 \times side \: }}}[/tex]

So, using this, we have

[tex]\rm :\longmapsto\:4x + 4y = 52[/tex]

[tex]\rm :\longmapsto\:4(x + y) = 52[/tex]

[tex]\rm\implies \:\boxed{\tt{ x + y = 13}} - - - - (1)[/tex]

Now, Further given that,

If square EFGH is cutting out from square ABCD, the area of remaining part is 91 square cm.

It means

[tex]\rm :\longmapsto\:Area_{[ABCD]} - Area_{[EFGH]} = 91[/tex]

We know,

[tex] \purple{\rm :\longmapsto\:\boxed{\tt{ Area_{[square]} = 4 \times side}}}[/tex]

So, using this, we get

[tex]\rm :\longmapsto\: {x}^{2} - {y}^{2} = 91[/tex]

can be further rewritten as using algebraic Identity,

[tex]\rm :\longmapsto\:(x + y)(x - y) = 91[/tex]

[tex]\rm :\longmapsto\:13(x - y) = 91[/tex]

[tex]\red{ \bigg\{  \sf \: \because \: using \: equation \: (1) \bigg\}}[/tex]

[tex]\rm\implies \:\boxed{\tt{ x - y = 7}} - - - - (2)[/tex]

On adding equation (1) and (2), we get

[tex]\rm :\longmapsto\:2x = 13 + 7[/tex]

[tex]\rm :\longmapsto\:2x = 20[/tex]

[tex]\rm\implies \:\boxed{ \: \bf \: \: x \: = \: 10 \:cm \: \: }[/tex]

On substituting the value of x in equation (1), we have

[tex]\rm :\longmapsto\:10 + y = 13[/tex]

[tex]\rm :\longmapsto\:y = 13 - 10[/tex]

[tex]\rm\implies \:\boxed{ \: \bf \: \: y \: = \: 3 \:cm \: \: }[/tex]

So,

[tex]\rm\implies \:\boxed{Side_{[square \: EFGH]} = y \: = 3 \: cm}[/tex]

and

[tex]\rm\implies \:\boxed{Side_{[square \: ABCD]} = x \: = 10 \: cm}[/tex]

Also,

[tex]\rm :\longmapsto\:\boxed{Area_{[square \: ABCD]} = {10}^{2} = 100 \: {cm}^{2} }[/tex]

[tex]\rm :\longmapsto\:\boxed{Area_{[squareEFGH] }\: = {3}^{2} = 9 \: {cm}^{2} }[/tex]

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

[tex]\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}[/tex]

Ver imagen SalmonWorldTopper