Step-by-step explanation:
[tex]\large\underline{\sf{Solution-}}[/tex]
Given that,
- ABCD is a square of side x cm
- EFGH is a square of side y cm
Further given that,
- Sum of all sides = 52 cm
It means
- Perimeter of square ABCD + Perimeter of square EFGH is 52 cm
We know,
[tex] \purple{\rm :\longmapsto\:\boxed{\tt{ Perimeter_{[square]} \: = \: 4 \times side \: }}}[/tex]
So, using this, we have
[tex]\rm :\longmapsto\:4x + 4y = 52[/tex]
[tex]\rm :\longmapsto\:4(x + y) = 52[/tex]
[tex]\rm\implies \:\boxed{\tt{ x + y = 13}} - - - - (1)[/tex]
Now, Further given that,
If square EFGH is cutting out from square ABCD, the area of remaining part is 91 square cm.
It means
[tex]\rm :\longmapsto\:Area_{[ABCD]} - Area_{[EFGH]} = 91[/tex]
We know,
[tex] \purple{\rm :\longmapsto\:\boxed{\tt{ Area_{[square]} = 4 \times side}}}[/tex]
So, using this, we get
[tex]\rm :\longmapsto\: {x}^{2} - {y}^{2} = 91[/tex]
can be further rewritten as using algebraic Identity,
[tex]\rm :\longmapsto\:(x + y)(x - y) = 91[/tex]
[tex]\rm :\longmapsto\:13(x - y) = 91[/tex]
[tex]\red{ \bigg\{ \sf \: \because \: using \: equation \: (1) \bigg\}}[/tex]
[tex]\rm\implies \:\boxed{\tt{ x - y = 7}} - - - - (2)[/tex]
On adding equation (1) and (2), we get
[tex]\rm :\longmapsto\:2x = 13 + 7[/tex]
[tex]\rm :\longmapsto\:2x = 20[/tex]
[tex]\rm\implies \:\boxed{ \: \bf \: \: x \: = \: 10 \:cm \: \: }[/tex]
On substituting the value of x in equation (1), we have
[tex]\rm :\longmapsto\:10 + y = 13[/tex]
[tex]\rm :\longmapsto\:y = 13 - 10[/tex]
[tex]\rm\implies \:\boxed{ \: \bf \: \: y \: = \: 3 \:cm \: \: }[/tex]
So,
[tex]\rm\implies \:\boxed{Side_{[square \: EFGH]} = y \: = 3 \: cm}[/tex]
and
[tex]\rm\implies \:\boxed{Side_{[square \: ABCD]} = x \: = 10 \: cm}[/tex]
Also,
[tex]\rm :\longmapsto\:\boxed{Area_{[square \: ABCD]} = {10}^{2} = 100 \: {cm}^{2} }[/tex]
[tex]\rm :\longmapsto\:\boxed{Area_{[squareEFGH] }\: = {3}^{2} = 9 \: {cm}^{2} }[/tex]
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
[tex]\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}[/tex]