Respuesta :

[tex]\\ \sf\longmapsto \sqrt{108x^2y^3}-\sqrt{12x^2y^3}+x\sqrt{75y^3}[/tex]

[tex]\\ \sf\longmapsto \sqrt{2\times 2\times 3\times 3\times 3\times x\times x\times y\times y\times y}-\sqrt{2\times 2\times 3\times x\times x\times y\times y\times y}+\sqrt{5\times 5\times 3\times y\times y\times y}[/tex]

[tex]\\ \sf\longmapsto 6\sqrt{3}xy\sqrt{y}-2\sqrt{3}xy\sqrt{y}+5\sqrt{3}xy\sqrt{y}[/tex]

[tex]\\ \sf\longmapsto \sqrt{3}xy\sqrt{y}(6-2+5)[/tex]

[tex]\\ \sf\longmapsto 9\sqrt{3}xy\sqrt{y}[/tex]

Answer:

[tex]{ \rm{ \sqrt{108 {x}^{2} {y}^{3} } - \sqrt{12 {x}^{2} {y}^{3} } + x \sqrt{75 {y}^{3} } }} \\ \\ = { \rm{\sqrt{(36 \times 3) {x}^{2} {y}^{3} } - \sqrt{(4 \times 3) {x}^{2} {y}^{3} } + x \sqrt{(3 \times 25)} {y}^{3} }} \\ \\ = { \rm{ \sqrt{ {x}^{2} {y}^{3} } ( \sqrt{36 \times 3} - \sqrt{4 \times 3} + \sqrt{3 \times 25} }}) \\ \\ { = \rm{x {y}^{ \frac{3}{2} } (6 \sqrt{3} - 2 \sqrt{3} + 5 \sqrt{3} ) }} \\ \\ = { \rm{x {y}^{ \frac{3}{2} } \{(6 - 2 + 5) \sqrt{3} \} }} \\ \\ = { \rm{x {y}^{ \frac{3}{2} } \times 9 \sqrt{3} }} \\ \\ = { \boxed{ \rm{9x \sqrt{3 {y}^{3} } }}}[/tex]