Respuesta :

Answer:

[tex]q(x) =-5[/tex]

Step-by-step explanation:

I am solving this using Function Notation.

We are given:

[tex]q(x)= \frac{1}{2}x - 3[/tex]

While we are to find:

[tex]q(x) =-4[/tex]

In Function Notation, replace all the "[tex]x[/tex]" you see with the value you are given.

So, in this case,

[tex]q(x)= \frac{1}{2}x - 3\\\\=\frac{1}{2}x - 3[/tex]

Would become

[tex]q(x)= \frac{1}{2}x - 3\\\\=\frac{1}{2}(-4) - 3[/tex]

Now we can solve.

[tex]\frac{1}{2}(-4) - 3[/tex]

Use PEMDAS; Parenthesis first;

[tex]\frac{1}{2}(-\frac{4}{1})[/tex]

Cross divide: 1 cancels 1, -4 ÷ 2 = -2

Hence, we are left with

[tex](-2) - 3[/tex]

[tex]-5[/tex]

Therefore, the value of x is -5