Answer:
[tex]q(x) =-5[/tex]
Step-by-step explanation:
I am solving this using Function Notation.
We are given:
[tex]q(x)= \frac{1}{2}x - 3[/tex]
While we are to find:
[tex]q(x) =-4[/tex]
In Function Notation, replace all the "[tex]x[/tex]" you see with the value you are given.
So, in this case,
[tex]q(x)= \frac{1}{2}x - 3\\\\=\frac{1}{2}x - 3[/tex]
Would become
[tex]q(x)= \frac{1}{2}x - 3\\\\=\frac{1}{2}(-4) - 3[/tex]
Now we can solve.
[tex]\frac{1}{2}(-4) - 3[/tex]
Use PEMDAS; Parenthesis first;
[tex]\frac{1}{2}(-\frac{4}{1})[/tex]
Cross divide: 1 cancels 1, -4 ÷ 2 = -2
Hence, we are left with
[tex](-2) - 3[/tex]
[tex]-5[/tex]
Therefore, the value of x is -5