Respuesta :

Use [tex]\sec\theta = \dfrac{1}{\cos{\theta}}[/tex]  to get

    [tex]\sec\theta -\cos{\theta}= \dfrac{1}{\cos{\theta}}-\cos(\theta})[/tex]

Then find a common denominator:

    [tex]\dfrac{1}{\cos{\theta}}-\cos(\theta}) = \dfrac{1}{\cos{\theta}}-\dfrac{\cos^2\theta}{\cos\theta}[/tex]

But now make that one fraction:

    [tex]\dfrac{1}{\cos{\theta}}-\dfrac{\cos^2\theta}{\cos\theta} = \dfrac{1 - \cos^2\theta}{\cos{\theta}}[/tex]

But that's just sin^2 on the top

    [tex]\dfrac{1 - \cos^2\theta}{\cos{\theta}} = \dfrac{sin^2\theta}{\cos{\theta}} = \dfrac{sin\theta\cdot sin\theta}{\cos{\theta}}[/tex]

Split that fraction up:

    [tex]=\dfrac{ sin\theta}{\cos{\theta}}\cdot sin\theta[/tex]

And tan = sin/cos

    [tex]=\tan\theta\cdot sin\theta[/tex]