The cost can be optimized by using a Linear Programming given the linear constraint system
Reason:
Let X represent Type 1 bacteria, and let Y, represent Type II bacteria, we have;
The constraints are;
4·X + 3·Y ≥ 240
20 ≤ X ≤ 60
Y ≤ 70
P = 5·X + 7·Y
Solving the inequality gives;
4·X + 3·Y ≥ 240
The boundary of the feasible region are;
(20, 70)
(20, 53.[tex]\overline 3[/tex])
(60, 0)
(60, 70)
The cost are ;
[tex]\begin{array}{|c|c|c|}X&Y&P= 5\times X + 7 \times Y\\20&70&590\\20&53.\overline 3&473.\overline 3\\60&0&300\\60&70&790\end{array}\right][/tex]
Learn more here:
https://brainly.com/question/17646656