Respuesta :

Answer:

10:A 11:D

Step-by-step explanation:

10)

g([tex](\sqrt{x+1}^2+3)/(\sqrt{x+1} )[/tex]

rewrite [tex]\sqrt{x+1}^2[/tex] as x +1

g [tex](\sqrt{x+1}^2)[/tex] = [tex]\frac{x+1+3}{\sqrt{x+1} }[/tex]

add 1+3

g[tex](\sqrt{x+1}^2)[/tex]=[tex]\frac{x+4}{\sqrt{x+1} }[/tex]

combine and symplify

[tex]g{\sqrt{x+1} } *\frac{{x+4 (\sqrt{x+1}) } }{{x+1} }[/tex]

reorder factors of the second side

[tex]g{\sqrt{x+1} } *\frac{{\sqrt{x+1} (x+4) } }{{x+1} }[/tex]

take out the root x+1

and you are left with A

11.

f(g(x))

substitue g into f

f([tex]f{\sqrt{x+3} } =\((\sqrt{x+3})^2 +9}[/tex]

rewrite sqrroot x+3 as x+3

[tex]f{\sqrt{x+3} } =\(x+3 +9}[/tex]

Now add 3+9

[tex]f{\sqrt{x+3} } =\(x+12}[/tex]

we get x+12

Now for domain

[tex]f{\sqrt{x+3} } =\((\sqrt{x+3})^2 +9}[/tex]

set the radicand root sqr x+3 >= 0 to find the expression defined

[tex]x+3\geq 0[/tex]

subtract 3 from both sides

[tex]x\geq 3[/tex]

turn it into interval notation

[-3,+∞)