Respuesta :

[tex]\\ \sf\longmapsto GI^2=FI(IH)[/tex]

[tex]\\ \sf\longmapsto GI^2=6(12)[/tex]

[tex]\\ \sf\longmapsto GI^2=72[/tex]

[tex]\\ \sf\longmapsto GI=\sqrt{72}[/tex]

[tex]\\ \sf\longmapsto GI=8.22[/tex]

If FI = 6 and IH = 12. The length of GI = 8.22.

How to estimate the length of GI?

Given: FI = 6 and IH = 12

To estimate the length of GI

[tex]$\mathrm{Gl}^{2}[/tex] = FI (IH)

Simplifying the above equation, we get

[tex]$\mathrm{Gl}^{2}[/tex]= 6 (12)

Remove parentheses: (a) = a

Multiply the numbers then, we get

[tex]$6 \cdot 12=72$[/tex]

[tex]$\mathrm{Gl}^{2}[/tex] = 72

GI = [tex]$\sqrt{72}[/tex]

GI  = 8.22

Therefore, the length of GI = 8.22.

To learn more about triangles length

https://brainly.com/question/14302533

#SPJ2