Respuesta :

Answer:

[tex]f(x) = {sec}^{ - 1} x \\ let \: y = {sec}^{ - 1} x \rightarrow \: x = sec \: y\\ \frac{dx}{dx} = \frac{d(sec \: y)}{dx} \\ 1 = \frac{d(sec \: y)}{dx} \times \frac{dy}{dy} \\ 1 = \frac{d(sec \: y)}{dy} \times \frac{dy}{dx} \\1 = tan \: y.sec \: y. \frac{dy}{dx} \\ \frac{dy}{dx} = \frac{1}{tan \: y.sec \: y} \\ \frac{dy}{dx} = \frac{1}{ \sqrt{( {sec}^{2} \: y - 1}) .sec \: y} \\ \frac{dy}{dx} = \frac{1}{ |x | \sqrt{ {x }^{2} - 1} } \\ \therefore \frac{d( {sec}^{ - 1}x) }{dx} = \frac{1}{ |x | \sqrt{ {x }^{2} - 1} } \\ \frac{d( {sec}^{ - 1}5x) }{dx} = \frac{1}{ |5x | \sqrt{25 {x }^{2} - 1} }\\\\y=arccos(\frac{1}{x})\Rightarrow cosy=\frac{1}{x}\\x=secy\Rightarrow y=arcsecx\\\therefore \frac{d( {sec}^{ - 1}x) }{dx} = \frac{1}{ |x | \sqrt{ {x }^{2} - 1} }[/tex]