Respuesta :
[tex]▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ { \huge \mathfrak{Answer}}▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ [/tex]
Using identity :
- [tex] {(a + b)}^{2} = {a}^{2} + b {}^{2} + 2ab[/tex]
- [tex]( \sqrt{5 }{+ \sqrt{2{}^{} } } ) {}^{2} [/tex]
- [tex]( \sqrt{5} ) {}^{2} + ( \sqrt{2} ) {}^{2} + 2( \sqrt{5} )( \sqrt{2} )[/tex]
- [tex]5 + 2 + 2 \sqrt{10} [/tex]
- [tex]7 + 2 \sqrt{10} [/tex]
therefore, the correct choice is :
- [tex] \mathrm{C.) \: \: 7 + 2 \sqrt{10} }[/tex]
Solution:
[tex]( \sqrt{5} + \sqrt{2} {)}^{2} \\ [/tex]
[tex]by \: \: \: using \: \: \: the \: \: \: formula \: \: (a + b) ^{2} = {a}^{2} + 2ab \: + {b}^{2} \: \: we \: \: \: get \\ ( \sqrt{5} {)}^{2} + 2( \sqrt{5}) \: (\sqrt{{2)}} + ( \sqrt{2) }^{2} \\ = \sqrt{5} \times \sqrt{5} + 2 \sqrt{5 \times 2} + \sqrt{2} \times \sqrt{2} \\ = 5 + 2 \sqrt{10} + 2 \\ = 7 + 2 \sqrt{10} [/tex][/tex]
Answer:
(C) 7+2√10