Simplify
x² - 9 / х^2 - 3x

Answer:
[tex]\frac{x+3}{x}[/tex]
Step-by-step explanation:
Factorise numerator and denominator
x² - 9 ← is a difference of squares and factors in general as
a² - b² = (a - b)(a + b) , then
x² - 9
= x² - 3² = (x - 3)(x + 3)
x² - 3x ← factor out x from each term
= x(x - 3)
Then
[tex]\frac{x^2-9}{x^2-3x}[/tex]
= [tex]\frac{(x-3)(x+3)}{x(x-3)}[/tex] ← cancel common factor (x - 3) on numerator/denominator
= [tex]\frac{x+3}{x}[/tex]