Respuesta :

Answer:

[tex]\frac{x+3}{x}[/tex]

Step-by-step explanation:

Factorise numerator and denominator

x² - 9 ← is a difference of squares and factors in general as

a² - b² = (a - b)(a + b) , then

x² - 9

= x² - 3² = (x - 3)(x + 3)

x² - 3x ← factor out x from each term

= x(x - 3)

Then

[tex]\frac{x^2-9}{x^2-3x}[/tex]

= [tex]\frac{(x-3)(x+3)}{x(x-3)}[/tex] ← cancel common factor (x - 3) on numerator/denominator

= [tex]\frac{x+3}{x}[/tex]

Here is the answer!:)
Ver imagen shakyapushpa879