Respuesta :
Answer:
a) a +b= 13, ab= 40
b) length= 8m, width= 5m
Step-by-step explanation:
Perimeter of rectangle= 2(length +width)
Area of rectangle= length ×width
a) Perimeter= 26m
2(a +b)= 26
Divide both sides by 2:
a +b= 26 ÷2
a +b= 13 ----- (1)
Area= 40m²
ab= 40 ----- (2)
b) From (1): a= 13 -b ----- (3)
Substitute (3) into (2):
(13 -b)(b)= 40
Expand:
13b -b²= 40
b² -13b +40= 0
Factorise:
(b -5)(b -8)= 0
b -5= 0 or b -8= 0
b= 5 or b= 8
Substitute into (3):
a= 13 -5 or a= 13 -8
a= 8 or a= 5
Since the length is usually the longer side of the rectangle, the length and the width of the rectangular garden is 8m and 5m respectively.
Answer:
Step-by-step explanation:
Perimeter = 2length + 2 width
2a + 2b = 26 m
Divide the equation by 2
[tex]\dfrac{2a}{2}+\dfrac{2b}{2}=\dfrac{26}{2}\\\\[/tex]
a + b = 13 --------------(I)
a = 13 -b
Area = length *width
a*b = 40 sq.m
ab = 40 ----------------(II)
Plugin a = 13 -b in the equation (II)
(13 - b)*b = 40
13*b - b*b = 40
13b - b² = 40
0 = 40 + b² - 13b
b² - 13b + 40 = 0
Sum = - 13
Product = 40
Factors = (-8) , (-5) {-8 + (-5) = -13 & (-5)*(-8) = 40}
b² - 8b - 5b + (-8)*(-5) = 40
b(b - 8) - 5(b - 8)= 0
( b - 8) (b - 5) = 0
b - 8 =0 ; b -5 =0
b= 8 ; b = 5
Length = 8 cm
Width = 5cm