Please solve this law of indices

[tex]\sf Formulas: \displaystyle \\\\\ 1) \ a^{n} \cdot a^{m}=a^{n+m} \\\\ 2) \sf \ \sqrt[n]{\sf a^{m}} = a^{\tfrac{m}{n} } \\\\\\ Solution : \\\\\\\sf \large \boldsymbol {} \displaystyle (36)^{\tfrac{3}{4} } \cdot \sqrt[\sf 4 ]{\sf 36^{-1}} }= 36^{\tfrac{3}{4} } \cdot 36^{\tfrac{-1}{4} } =36^{\tfrac{3}{4}+\big(-\tfrac{1}{4} \big ) }= \\\\\\\ 36^{\tfrac{3}{4} -\tfrac{1}{4} } =36^{\tfrac{2}{4} }=(6^ {\backslash \!\!\!2})^{\tfrac{1}{\backslash\!\!\!2} }= 6^1=\boxed{\sf 6}[/tex]