Respuesta :

Answer:

b = [tex]\sqrt{333}[/tex]

Step-by-step explanation:

1. We can use the Pythagorean Theorem to find the missing side, b.

  • [tex]14^2 + b^2 = 23^2[/tex]

2. (Solving)

Step 1: Simplify both sides of the equation.

  • [tex](14*14)+b^2 =(23*23)[/tex]
  • [tex]196 + b^2 = 529[/tex]

Step 2: Subtract 196 from both sides.

  • [tex]196 + b^2 - 196 = 529 - 196[/tex]
  • [tex]b^2 = 333[/tex]

Step 3: Take square root of both sides.

  • [tex]\sqrt{b^2} = \sqrt{333}[/tex]
  • [tex]b = \sqrt{333}[/tex]

Step 4: Check if solution is correct.

  • [tex]14^2 + \sqrt{333^2} = 23^2[/tex]
  • [tex](14*14)+(\sqrt{333} *\sqrt{333})=23*23[/tex]
  • [tex]196 + 333 = 529[/tex]
  • [tex]529 = 529[/tex]

Therefore, b = [tex]\sqrt{333}[/tex].

Answer:

Step-by-step explanation:

[tex]a^{2} + b^{2} = c^2\\14^2 + b^2 = 23^2\\\\196 + b^2 = 529\\\\b^2 = 333\\b = 18.2482875909[/tex]