Respuesta :
Step-by-step explanation:
[tex] = {( \frac{27}{8} )}^{ \frac{1}{3} } \times ( \frac{243}{32} )^{ \frac{1}{5} } \div {( \frac{2}{3} )}^{2} [/tex]
[tex] = { ({ (\frac{3}{2} )}^{3}) }^{ \frac{1}{3} } \times {( {( \frac{3}{2}) }^{5} )}^{ \frac{1}{5} } \div {( \frac{2}{3} )}^{2} [/tex]
[tex] = {( \frac{3}{2} )}^{3 \times \frac{1}{3} } \times {( \frac{3}{2} )}^{5 \times \frac{1}{5} } \times {( \frac{3}{2} )}^{2} [/tex]
[tex] = \frac{3}{2} \times \frac{3}{2} \times {( \frac{3}{2} )}^{2} [/tex]
[tex] = {( \frac{3}{2} )}^{1 + 1 + 2} [/tex]
[tex] = {( \frac{3}{2} )}^{4} \: or \: \frac{81}{16} [/tex]
[tex]\large\underline{\sf{Solution-}}[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{27}{8} \bigg)^{\frac{1}{3}} \times \Bigg[\bigg( \dfrac{243}{32} \bigg)^{\frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
We can write as :
27 = 3 × 3 × 3 = 3³
8 = 2 × 2 × 2 = 2³
243 = 3 × 3 × 3 × 3 × 3 = 3⁵
32 = 2 × 2 × 2 ×2 × 2 = 2⁵
[tex]\sf{\longmapsto{\bigg( \dfrac{3 \times 3 \times 3}{2 \times 2 \times 2} \bigg)^{\frac{1}{3}} \times \Bigg[\bigg( \dfrac{3 \times 3 \times 3 \times 3 \times 3}{2 \times 2 \times 2 \times 2 \times 2} \bigg)^{\frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{{(3)}^{3}}{{(2)}^{3}} \bigg)^{\frac{1}{3}} \times \Bigg[\bigg( \dfrac{({3}^{5})}{{(2)}^{5}} \bigg)^{\frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
Now, we can write as :
(3³/2³) = (3/2)³
(3⁵/2⁵) = (3/2)⁵
[tex]\sf{\longmapsto{\left\{\bigg(\frac{3}{2} \bigg)^{3} \right\}^{\frac{1}{3}} \times \Bigg[\left\{\bigg(\frac{3}{2} \bigg)^{5} \right\}^{\frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
Now using law of exponent :
[tex]{\sf{({a}^{m})^{n} = {a}^{mn}}}[/tex]
[tex]\sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{3 \times \frac{1}{3}} \times \Bigg[\bigg(\frac{3}{2} \bigg)^{5 \times \frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
[tex] \sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{\frac{3}{3}} \times \Bigg[\bigg(\frac{3}{2} \bigg)^{\frac{5}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{1} \times\Bigg[\bigg(\frac{3}{2} \bigg)^{1} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{1} \times \Bigg[\bigg(\frac{3}{2} \bigg)^{1} \times \bigg(\dfrac{3}{2} \bigg)^{2}\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{1} \times \Bigg[\bigg(\frac{3}{2} \bigg)^{1} \times \bigg(\dfrac{3}{2} \times \dfrac{3}{2} \bigg)\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{3}{2} \bigg)^{1} \times \Bigg[\bigg(\dfrac{3}{2} \bigg)^{1} \times \bigg(\dfrac{3 \times 3}{2 \times 2}\bigg)\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{3}{2} \bigg)^{1} \times \Bigg[\bigg(\dfrac{3}{2} \bigg)^{1} \times \bigg(\dfrac{9}{4}\bigg)\Bigg]}} \\[/tex]
[tex] \sf{\longmapsto{\bigg( \frac{3}{2} \bigg)\times \Bigg[\bigg(\frac{3}{2} \bigg)\times \bigg(\dfrac{9}{4}\bigg)\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{3}{2} \bigg)\times \Bigg[ \: \: \dfrac{3}{2} \times \dfrac{9}{4} \: \: \Bigg]}}\\[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{3}{2} \bigg)\times \Bigg[ \: \: \dfrac{3 \times 9}{2 \times 4} \: \: \Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg(\dfrac{3}{2} \bigg)\times \Bigg[ \: \: \dfrac{27}{8} \: \: \Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\dfrac{3}{2} \times \dfrac{27}{8}}} \\[/tex]
[tex]\sf{\longmapsto{\dfrac{3 \times 27}{2 \times 8}}} \\[/tex]
[tex] \sf{\longmapsto{\dfrac{81}{16}}\: ≈ \:5.0625\:\red{Ans.}} \\[/tex]