Answer:
[tex]y - 1 = - \frac{4}{7} (x + 5)[/tex]
Step-by-step explanation:
Point-slope form
y- y₁= m(x -x₁), where m is the slope and (x₁, y₁) is a coordinate the line passes through
Parallel lines have the same slope.
[tex]\boxed{slope = \frac{y1 - y2}{x1 - x2} }[/tex]
Slope of line a
= slope of line b
[tex] = \frac{7 - 3}{ - 2 - 5} [/tex]
[tex] = \frac{4}{ - 7} [/tex]
[tex] = - \frac{4}{7} [/tex]
Substituting the slope into the equation:
[tex]y - y1 = - \frac{4}{7} (x - x1)[/tex]
Substituting the coordinates (-5, 1):
[tex]y - 1 = - \frac{ 4}{7} [x -( - 5)][/tex]
[tex]y - 1 = - \frac{4}{7} (x + 5)[/tex]