Answer:
Step-by-step explanation:
[tex]\frac{2-\iota\sqrt{3} }{2+\iota\sqrt{3} } =\frac{2-\iota\sqrt{3} }{2+\iota\sqrt{3} }\times \frac{2-\iota \sqrt{3} }{2-\iota \sqrt{3} } \\=\frac{(2-\iota\sqrt{3} )^2}{2^2-(\iota\sqrt{3} )^2} \\=\frac{4+3 (\iota)^2-4\iota \sqrt{3}}{4-3\iota^2} \\=\frac{4-3-4\iota\sqrt{3}}{4+3} \\=\frac{1}{7} -\frac{4 \sqrt{3}}{7} \iota[/tex]