For given angle [tex]\theta[/tex],
[tex]\bold{cot(\theta)=\frac{5}{6.24}}\\\\ \bold{cos(\theta)=\frac{5}{8}}\\\\ \bold{sec(\theta)=\frac{8}{5}}[/tex]
What is cosine of angle?
In a right triangle, for angle Ф
cos(Ф) = adjacent side of angle Ф / hypotenuse
What is sine of angle?
In a right triangle, for angle Ф
cos(Ф) = opposite side of angle Ф / hypotenuse
What is secant of angle?
In a right triangle for an angle Ф,
sec(Ф) = 1 / (cos(Ф))
What is cotangent formula for an angle Ф?
In a right triangle for an angle Ф,
cot(Ф) = cos(Ф) / sin(Ф)
What is Pythagoras theorem?
For a right triangle,
[tex]c^2=a^2+b^2[/tex]
where 'c' represents the hypotenuse
'a' and 'b' be the other two sides of the right triangle
For given example,
The adjacent side of [tex]\theta[/tex] is 5 and the hypotenuse is 5.
[tex]\bold {cos(\theta)=\frac{5}{8}}[/tex]
We find the opposite side of the angle [tex]\theta[/tex] using Pythagoras theorem.
Let 'x' be the opposite side of the angle [tex]\theta[/tex] .
By Pythagoras theorem,
[tex]\Rightarrow 8^{2} =x^{2} + 5^{2}\\\\ \Rightarrow x^{2} =64-25\\\\ \Rightarrow x=\sqrt{39}\\\\ \Rightarrow x=6.24[/tex]
So, the opposite side of the angle [tex]\theta[/tex] is 6.24 units.
[tex]sin(\theta)=\frac{6.24}{8}[/tex]
So, the value of [tex]cot(\theta)[/tex] would be,
[tex]\Rightarrow cot(\theta)=\frac{cos(\theta)}{sin(\theta)}\\\\\Rightarrow cot(\theta)=\frac{\frac{5}{8} }{\frac{6.24}{8} } \\\\\Rightarrow \bold{cot(\theta)=\frac{5}{6.24}}[/tex]
Now we find the value of [tex]\bold{sec(\theta)}[/tex]
[tex]\Rightarrow sec(\theta)=\frac{1}{cos(\theta)}\\\\\Rightarrow sec(\theta)=\frac{1}{\frac{5}{8} }\\\\ \Rightarrow \bold{sec(\theta)=\frac{8}{5}}[/tex]
Therefore, for given angle [tex]\theta[/tex],
[tex]\bold{cot(\theta)=\frac{5}{6.24}}\\\\ \bold{cos(\theta)=\frac{5}{8}}\\\\ \bold{sec(\theta)=\frac{8}{5}}[/tex]
Learn more about cotθ, cosθ, and secθ here:
https://brainly.com/question/3998961
#SPJ2