Respuesta :

Answer:

[tex] \cos( \theta) = \frac{5}{8} \\ {8}^{2} = {5}^{2} + {opp}^{2} \\ {opp}^{2} = 64 - 25 = 39 \\ opp = \sqrt{39} \\ \sin(\theta) = \frac{\sqrt{39}}{8} \\ \tan(\theta) = \frac{ \sqrt{39} }{5} \\ \cot(\theta) = \frac{1}{\tan(\theta)} = \frac{1}{\frac{ \sqrt{39} }{5}} \\ \cot(\theta) = \frac{5}{ \sqrt{39} } \\ \csc( \theta) = \frac{1}{\sin(\theta)} = \frac{1}{\frac{\sqrt{39}}{8}} \\ \csc( \theta) = \frac{8}{ \sqrt{39} } \\ \sec( \theta) = \frac{1}{\cos( \theta) } = \frac{1}{ \frac{5}{8} } \\ \sec( \theta) = \frac{8}{5} [/tex]

For given angle [tex]\theta[/tex],

[tex]\bold{cot(\theta)=\frac{5}{6.24}}\\\\ \bold{cos(\theta)=\frac{5}{8}}\\\\ \bold{sec(\theta)=\frac{8}{5}}[/tex]

What is cosine of angle?

In a right triangle, for angle Ф

cos(Ф) = adjacent side of angle Ф / hypotenuse

What is sine of angle?

In a right triangle, for angle Ф

cos(Ф) = opposite side of angle Ф / hypotenuse

What is secant of angle?

In a right triangle for an angle Ф,

sec(Ф) = 1 / (cos(Ф))

What is cotangent formula for an angle Ф?

In a right triangle for an angle Ф,

cot(Ф) = cos(Ф) / sin(Ф)

What is Pythagoras theorem?

For a right triangle,

[tex]c^2=a^2+b^2[/tex]

where 'c' represents the hypotenuse

'a' and 'b' be the other two sides of the right triangle

For given example,

The adjacent side of [tex]\theta[/tex] is 5 and the hypotenuse is 5.

[tex]\bold {cos(\theta)=\frac{5}{8}}[/tex]

We find the opposite side of the angle [tex]\theta[/tex] using Pythagoras theorem.

Let 'x' be the opposite side of the angle [tex]\theta[/tex] .

By Pythagoras theorem,

[tex]\Rightarrow 8^{2} =x^{2} + 5^{2}\\\\ \Rightarrow x^{2} =64-25\\\\ \Rightarrow x=\sqrt{39}\\\\ \Rightarrow x=6.24[/tex]

So, the opposite side of the angle [tex]\theta[/tex]  is 6.24 units.

[tex]sin(\theta)=\frac{6.24}{8}[/tex]

So, the value of [tex]cot(\theta)[/tex] would be,

[tex]\Rightarrow cot(\theta)=\frac{cos(\theta)}{sin(\theta)}\\\\\Rightarrow cot(\theta)=\frac{\frac{5}{8} }{\frac{6.24}{8} } \\\\\Rightarrow \bold{cot(\theta)=\frac{5}{6.24}}[/tex]

Now we find the value of [tex]\bold{sec(\theta)}[/tex]

[tex]\Rightarrow sec(\theta)=\frac{1}{cos(\theta)}\\\\\Rightarrow sec(\theta)=\frac{1}{\frac{5}{8} }\\\\ \Rightarrow \bold{sec(\theta)=\frac{8}{5}}[/tex]

Therefore, for given angle [tex]\theta[/tex],

[tex]\bold{cot(\theta)=\frac{5}{6.24}}\\\\ \bold{cos(\theta)=\frac{5}{8}}\\\\ \bold{sec(\theta)=\frac{8}{5}}[/tex]

Learn more about cotθ, cosθ, and secθ here:

https://brainly.com/question/3998961

#SPJ2