Respuesta :

Answer:

[tex]x\in [-1 \ ; \ 1) \ \cup \ (1 \ ;\ 3] \ \ or \ \ \left [ \begin{array}{ccc} x\geq -1 \\ \!\!\!\!x\neq 1 \\ \!\!\!\!x\leq 3\end{array}[/tex]

Step-by-step explanation:

[tex]\displaystyle y=2x^2+2 \ \ ; \ \ -2\leqslant x\leqslant 4 \\\\ Find \ intwerval \ if : \\\\ -1<y \leq 3 \Leftrightarrow -1<2x^2-2x\leqslant 3 \\\\ Then : \\\\ \left [{{x^2-2x>-1} \atop {x^2-2x\leq 3 } \right. \Leftrightarrow \left [ {{(x-1)^2>0} \atop {(x-3)(x+1) \leq 0}} \right. \Leftrightarrow \\\\\\ \left [ {{x\neq 1} \atop {(x-3)(x+1)\leq 0}} \right. \ \ ; \ \ and \ \-2\leqslant x\leqslant 4 \\\\ Then: \\\\ signs : +++[-1]---(1)---[3] +++ \\\\[/tex]

                           \\\\\\\\\\\\\\\\\

[tex]x\in [-1 \ ; \ 1) \ \cup \ (1 \ ;\ 3][/tex]

Let's check whether  [tex]-2\leqslant x\leqslant 4[/tex]    or [-2 ; 4 ] is included in the interval

----------[-1]--------(1)--------[3]------

       |                  |

       |                  |

---[-2]---[-1]---------(1)-----------[3]--------[4]

           /////////////

The interval enters the interval x completely then the answer is :

[tex]x\in [-1 \ ; \ 1) \ \cup \ (1 \ ;\ 3] \ \ or \ \ \left [ \begin{array}{ccc} x\geq -1 \\ \!\!\!\!x\neq 1 \\ \!\!\!\!x\leq 3\end{array}[/tex]