[tex] \large{\bold \red{ \sum \limits_{8}^{4} {x}^{2} + 9( \frac{ \cos^{2}\infty }{ { \sin}^{2} \infty } )}}[/tex]
No spam please!!!​
Steps should be must.

Respuesta :

Answer:

No solution

Step-by-step explanation:

We have

[tex]$\sum_{x=8}^{4}x^2 + 9\left(\dfrac{\cos^2(\infty)}{\sin^2(\infty)} \right)$[/tex]

For the sum it is not correct to assume

[tex]$\sum_{x=8}^{4}x^2= 8^2 + 7^2+6^2+5^2+4^2 = 64+49+36+25+16 = 190$[/tex]

Note that for

[tex]$\sum_{x=a}^b f(x)$[/tex]

it is assumed [tex]a\leq x \leq b[/tex] and in your case [tex]\nexists x\in\mathbb{Z}: a\leq x\leq b[/tex] for [tex]a>b[/tex]

In fact, considering a set [tex]S[/tex] we have

[tex]$\sum_{x=a}^b (S \cup \varnothing) = \sum_{x=a}^b S + \sum_{x=a}^b \varnothing $[/tex] that satisfy [tex]S = S \cup \varnothing[/tex]

This means that, by definition [tex]\sum_{x=a}^b \varnothing = 0[/tex]

Therefore,

[tex]$\sum_{x=8}^{4}x^2 = 0$[/tex]

because the sum is empty.

For

[tex]9\left(\dfrac{\cos^2(\infty)}{\sin^2(\infty)} \right)[/tex]

we have other problems. Actually, this case is really bad.

Note that [tex]\cos^2(\infty)[/tex] has no value. In fact, if we consider for the case

[tex]$\lim_{x \to \infty} \cos^2(x)$[/tex], the cosine function oscillates between [tex][-1, 1][/tex] , and therefore it is undefined. Thus, we cannot evaluate

[tex]9\left(\dfrac{\cos^2(\infty)}{\sin^2(\infty)} \right)[/tex]

and then

[tex]$\sum_{x=8}^{4}x^2 + 9\left(\dfrac{\cos^2(\infty)}{\sin^2(\infty)} \right)$[/tex]

has no solution