Respuesta :

1) Simplify : - 4x + 3(2x + 5) - 3x + 12

breaking 3(2x + 5) we get,

  • - 4x + 6x + 15 - 3x + 12

Now, as per the PEMDAS rule let's shorten the like terms

  • 2x - 3x + 27

  • - x + 27

Correct option is C i.e. - x + 27

2) Simplify : 3x + 3(x + 6) - 4 - 5x

breaking 3(x + 6) we get,

  • 3x + 3x + 18 - 4 - 5x

Again using the same rule we see,

  • 6x + 14 - 5x

  • x + 14

Correct answer is option C i.e. x + 14

3) Expression : y[x² - 2(1 + 2)] ÷ y + 5²

In this case we are given that x = 3 whereas y = 7

Putting the values of x and y we see,

  • 7[(3)² - 2(3)] ÷ 7 + 25

  • 7[9 - 6] ÷ 7 + 25

  • 7[3] ÷ 7 + 25

  • 21 ÷ 7 + 25

  • 3 + 25

  • 28

Henceforth, the final answer is 28

How to solve your problem

-4x+3(2x+5)-3x+12

Simplify

1

Distribute

-4x+{\color{#c92786}{3(2x+5)}}-3x+12

-4x+{\color{#c92786}{6x+15}}-3x+12

2

Add the numbers

3

Combine like terms

Solution

ANSWER:-x+27