A sphere fits snugly inside a cube with 2.4 m. edges. What is the approximate volume of the space between the sphere and cube to the nearest tenth?

Respuesta :

Area of cube = s*s*s = 2.4 * 2.4 * 2.4 = 13.824 m³

Since the sphere is snugly fit in the cube, so the diameter of the sphere is equal to the length of the cube.

d = 2.4m, radius, r = d/2 = 2.4/2 = 1.2 m

Volume of sphere = (4/3)πr³

                                 = (4/3)*π*1.2*1.2*1.2 = 2.304π

                                 ≈ 2.304*3.1416 ≈ 7.2382 m³

Volume of space between sphere and cube = Volume of cube - Volume of sphere

                                                     = 13.824 m³ - 7.2382 m³ = 6.5858 m³

Volume ≈ 6.6 m³      to the nearest tenth

Hope this helps.