Respuesta :

 I think the answer is 2774 but dont quote me on it

Answer:

2775 ways

Step-by-step explanation:

We have been given the case to choose exactly two tails when flipped 75 times  means  [tex]^{75}C_2[/tex]

Since, [tex]^nC_r[/tex] is equal to [tex]\frac{n!}{r!\cdot(n-r)!}[/tex]  

Here n =75, r=2 substituting the values we will get

[tex]\frac{75!}{2!(75-2)!}[/tex]

[tex]n!=n\cdot (n-1)\cdot (n-2).....1[/tex]

After simplification we will get  [tex]\frac{75\cdot 74\cdot 73!}{2!\cdot73!}[/tex]

Cancel out the common term that is 73! we will get

after more simplification we will get [tex]\frac{75\cdot 74\cdot}{2!}[/tex]

Finally, we will get [tex]\frac{75\cdot 74\cdot}{2}=75\cdot37=2775[/tex]