Respuesta :
The given sequence is arithmetic with a common difference of [tex]\dfrac12[/tex] between each term.
Recursively, you can define the sequence as
[tex]a_n=a_{n-1}+\dfrac12[/tex]
and solve explicitly for the [tex]n[/tex]th term by recursively substituting the right hand side:
[tex]a_n=a_{n-1}+\dfrac12[/tex]
[tex]\implies~a_n=a_{n-2}+2\times\dfrac12[/tex]
[tex]\implies~a_n=a_{n-3}+3\times\dfrac12[/tex]
[tex]\implies\cdots\implies~a_n=a_1+(n-1)\dfrac12[/tex]
The first term of the sequence is [tex]a_1=\dfrac{21}2[/tex], so the [tex]n[/tex]th term is given by the formula
[tex]a_n=\dfrac{21}2+\dfrac{n-1}2[/tex]
So, the 22nd term in the sequence is
[tex]a_{22}=\dfrac{21}2+\dfrac{22-1}2=21[/tex]
Recursively, you can define the sequence as
[tex]a_n=a_{n-1}+\dfrac12[/tex]
and solve explicitly for the [tex]n[/tex]th term by recursively substituting the right hand side:
[tex]a_n=a_{n-1}+\dfrac12[/tex]
[tex]\implies~a_n=a_{n-2}+2\times\dfrac12[/tex]
[tex]\implies~a_n=a_{n-3}+3\times\dfrac12[/tex]
[tex]\implies\cdots\implies~a_n=a_1+(n-1)\dfrac12[/tex]
The first term of the sequence is [tex]a_1=\dfrac{21}2[/tex], so the [tex]n[/tex]th term is given by the formula
[tex]a_n=\dfrac{21}2+\dfrac{n-1}2[/tex]
So, the 22nd term in the sequence is
[tex]a_{22}=\dfrac{21}2+\dfrac{22-1}2=21[/tex]
Answer:
the answer is B.
Step-by-step explanation: