Respuesta :
Step 1 is to factor everything!
After factoring you will get:
x-5 over (x+2)(x+5) times x+4 over (x-3)(x+4)
Step 2 is to remove the duplicate factors!
Remove x+4 and x+5
x-5 over (x+2)(x-5) times 1 over x-3 = 1 over x+2 times 1 over x-3
Step 3 is to multiply the numerators and the denominators.
End result is 1 over (x+2)(x-3)
After factoring you will get:
x-5 over (x+2)(x+5) times x+4 over (x-3)(x+4)
Step 2 is to remove the duplicate factors!
Remove x+4 and x+5
x-5 over (x+2)(x-5) times 1 over x-3 = 1 over x+2 times 1 over x-3
Step 3 is to multiply the numerators and the denominators.
End result is 1 over (x+2)(x-3)
Answer: Our simplified form will be
[tex]\frac{1}{(x+2)(x-3)}[/tex]
Step-by-step explanation:
Since we have given that
[tex]\frac{x-5}{x^2-3x-10}\times \frac{x+4}{x^2+x-12}[/tex]
So, first we split the middle term of the denominator ,
[tex]x^2-3x-10=0\\\\=x^2-5x+2x-10\\\\=x(x-5)+2(x-5)\\\\=(x-5)(x+2)[/tex]
Similarly,
[tex]x^2+x-12=0\\\\x^2+4x-3x-12=0\\\\x(x+4)-3(x+4)=0\\\\(x+4)(x-3)=0[/tex]
Now, we put in our expression above:
[tex]\frac{x-5}{(x-5)(x+2)}\times \frac{x+4}{(x-3)(x+4)}\\\\=\frac{1}{x+2}\times \frac{1}{x-3}\\\\=\frac{1}{(x+2)(x-3)}[/tex]
Hence, our simplified form will be
[tex]\frac{1}{(x+2)(x-3)}[/tex]