zxw01
contestada

The deposits Ginny makes at her bank each month form an arithmetic sequence. The deposit for month 3 is $150, and the deposit for month 5 is $180. Answer the questions below and show all work.

The deposits Ginny makes at her bank each month form an arithmetic sequence The deposit for month 3 is 150 and the deposit for month 5 is 180 Answer the questio class=

Respuesta :

1. 15 dollars
2. Deposit=15*month+105
3. Deposit=15*12+105=$285
4.
500=15*month+105
395=15*month
26.33=month
Round up to 27 for the nearest whole month, so month 27.

Hope this helps!

Answer:

d=$15,

Explicit formula:  [tex]a_n=120+(n-1)15[/tex]

[tex]a_{12}=285[/tex]

At 27 month Ginni make a deposit at least $500.

Step-by-step explanation:

Given that the deposits Ginny makes at her bank each month form an arithmetic sequence. The deposit for month 3 is $150, and the deposit for month 5 is $180.

we have to find the common difference i.e d

-- , -- , $150, x, $180 , -------

Let $x be the 4th deposit.

∴ x-150=180-x ⇒ 2x=330 ⇒ x=165

Common difference,d=165-150=$15

Let us find the first tem i.e the value of a

[tex]a_3=a+(3-1)15[/tex]

⇒ [tex]150=a+30\thinspace gives\thinspace a=120[/tex]

Explicit formula for arithmetic sequence is

[tex]a_n=a+(n-1)d[/tex]

⇒ [tex]a_n=120+(n-1)15[/tex]

Now, we have to find the amount of Ginni in 12th deposit i.e n=12

[tex]a_{12}=120+(12-1)15[/tex]

⇒  [tex]a_{12}=120+165=285[/tex]

Now, we have to find at what month Ginni make a deposit at least $500.

[tex]a_n=120+(n-1)15[/tex]

⇒ [tex]500=120+(n-1)15[/tex]

⇒ [tex]n-1=\frac{380}{15}[/tex]

⇒ [tex]n=26.33\sim27[/tex]

hence, at 27 month Ginni make a deposit at least $500.