Let f(x) = 8x3 − 22x2 − 4 and g(x) = 4x − 3. Find f of x over g of x .
 2x2 − 4x − 3 − (13/4x-3)  
2x2 − (4x − 3/13) 
 2x2 − 7x − 1
   2x2 − 7x − 5 +(x-4/4x-3)  

Respuesta :

I hope this helps you
Ver imagen Аноним

Answer:

Option 1 -  [tex](2x^2-4x-3)\frac{-13}{(4x-3)}[/tex]

Step-by-step explanation:

Given : [tex]f(x)=8x^3-22x^2-4[/tex] and [tex]g(x)=4x-3[/tex]

To find : f of x over g of x.

Solution :

[tex]f(x)=8x^3-22x^2-4[/tex] and [tex]g(x)=4x-3[/tex]

f of x over g of x is [tex]\frac{f(x)}{g(x)}[/tex]

Substitute the value in the formula,

[tex]\frac{f(x)}{g(x)}=\frac{8x^3-22x^2-4}{4x-3}[/tex]

Now, We have to divide the numerator by denominator with the help of calculator.

Refer the attached figure below.

Here, Dividend is [tex]f(x)=8x^3-22x^2-4[/tex]

Divisor is  [tex]g(x)=4x-3[/tex]

We get, Quotient is [tex]2x^2-4x-3[/tex]

and Remainder is -13.

The form is [tex]\text{Dividend}=\text{Quotient}\times \text{Divisor}+\text{Remainder}[/tex]

i.e. [tex](8x^3-22x^2-4)=(2x^2-4x-3)\times(4x-3)+(-13)[/tex]

or in mixed fraction it is written as [tex](2x^2-4x-3)\frac{-13}{(4x-3)}[/tex]

Therefore, Option 1 is correct.

Ver imagen pinquancaro