Respuesta :

Answer:

option C is correct i.e. 9

Step-by-step explanation:

We have given that : [tex]f(x)=2 \sqrt[3]{27^{2x}}[/tex]

To find : The simplified base of the function f(x)  

Solution:

Now, we solve the equation  

[tex]f(x)=2 \sqrt[3]{27^{2x}}[/tex]

[tex]f(x)=2(27^x)^{\frac{2}{3}}[/tex]  

[tex]f(x)=2(3^{2x})[/tex]  

[tex]f(x)=2((3^2)^{x})[/tex]  

[tex]f(x)=2(9^{x})[/tex]  

Therefore, the  simplified base of the function f(x) is 9


Answer:

Option C is correct

9 the simplified base for the given function f(x)

Step-by-step explanation:

Using exponent rules:

[tex](x^m)^n = x^{mn}[/tex]

[tex]\sqrt[n]{x^b} = x^{\frac{b}{n}}[/tex]

Given the function:

[tex]f(x) = 2\sqrt[3]{27^{2x}}[/tex]

We can write 27 as:

[tex]27 = 3 \cdot 3 \cdot 3 = 3^3[/tex]

then;

[tex]f(x) = 2\sqrt[3]{(3^3)^{2x}}[/tex]

Apply the exponent rules:

[tex]f(x) = 2\sqrt[3]{3^{6x}}[/tex]

Apply the exponent rules:

[tex]f(x) =2 \cdot (3^{6x})^{\frac{1}{3}} = 2 \cdot 3^{2x}[/tex]

⇒[tex]f(x) = 2 \cdot (3^2)^x = 2 \cdot 9^x[/tex]

⇒[tex]f(x) =2 \cdot 9^x[/tex]

On comparing with exponential function [tex]f(x) = ab^x[/tex] where, b is base of the exponent function, then

b = 9

Therefore, the simplified base for the given function is, 9